I. Introduction

The American Gas Association, founded in 1918, represents more than 200 local energy companies that deliver clean natural gas throughout the United States. There are more than 71 million residential, commercial and industrial natural gas customers in the U.S., of which 92 percent — more than 65 million customers — receive their gas from AGA members. AGA is an advocate for natural gas utility companies and their customers and provides a broad range of programs and services for member natural gas pipelines, marketers, gatherers, international natural gas companies and industry associates. Today, natural gas meets almost one-fourth of the United States' energy needs.

AGA appreciates the opportunity to submit comments to the above referenced notice and request for comments regarding PHMSA's plans to revise the annual report form for gas transmission and gathering pipeline systems. The notice and request for comments was published in the Federal Register on February 13, 2013 in volume 78, beginning at page 10261.

II. Comments

PART A, OPERATOR INFORMATION

In Section A7: PHMSA's proposed the following change written in italics.

THIS REPORT PERTAINS TO THE FOLLOWING TYPE OF OPERATOR (Select Type of Operator based on the structure of the company included in this OPID for which this report is being submitted):
AGA believes PHMSA’s proposed definitions of operator type are not consistent with standard industry practice. Public utility districts, for example, are typically considered municipal utilities. Privately owned usually excludes investor-owned utilities. The Energy Information Agency Form EIA-176 requires distribution operators to classify the operator type into 5 categories:

- Investor-owned,
- municipally-owned,
- privately-owned,
- cooperative and
- other.

Operators are familiar with this classification system. This classification is consistent with other government agency reporting in the pipeline industry and follows financial reporting classifications. AGA urges PHMSA to adopt the five operator types found in EIA Form 176.

Part B, SYSTEM DESCRIPTION

PHMSA uses the term “Reconditioned Cast Iron” in Section B1 and “Rehabilitated Cast Iron” in Sections B2 and B3. AGA urges PHMSA to use the same terminology in all three sections. Since the Instructions define “reconditioned” and not “rehabilitated” AGA suggests the term “reconditioned” be used in all three sections.

AGA commends PHMSA for adding this new category. Distribution operators are engaged in many efforts to enhance safety. Operators continue to replace older pipeline materials with more modern materials. Because of the congestion in urban pipeline right-of-ways it is often preferable to recondition older metallic pipe with suitable materials to ensure continued safe operation. AGA supports the definition of reconditioned pipe that is in the instructions.

PART C, LEAKS REPAIRED BY CAUSE

PHMSA is proposing minor changes to the eight leak cause categories and the definitions of leak causes in the instructions for completing the Distribution Annual Report.

In general, the Incident Report instructions include much more guidance about the types of leaks that go into each cause category. In the table below AGA has copied PHMSA’s proposed definitions from this rulemaking (Column 2) and the existing Incident Report cause instructions (Column 3). AGA and APGA members have discussed the definitions and urge PHMSA to use the cause definitions shown in Column 4 in the instructions for the Distribution Annual Report form. These definitions are virtually identical to the current Incident Report Form instructions. There are some minor differences as explained below.

Corrosion Failure:
The AGA proposed definition is essentially identical to the Incident Report form. Importantly, the definition clarifies the leaks that PHMSA wants to classify as originating from material defects.

Natural Force Damage:
The Incident Report instructions instruct operators to classify “Other Outside Force” as incidents in which high winds cause damage by impact from objects blown by wind. This is
inconsistent with other statements in the instructions and forms that suggest the “Other Outside Force” category is intended for events in which humans are involved. AGA suggests amending the Annual Report form instructions to include wind-blown object damage under the “Natural Force Damage” category. When the Incident Report instructions are next open for comment, AGA urges PHMSA to make similar changes to the Incident Report Form instructions. Additionally, the incident report instructions are unnecessarily long and should be made more concise during revision. AGA therefore referred to them in the annual report instructions to promote consistency.

Excavation Damage:
The proposed changes align the Annual Report definition with the Incident Report definition, specifically defining damage that results in an ‘immediate release of gas’ and delineating leaks that occur in a later release. AGA believes that the description in column 4 is needed to clarify the differences between reporting excavation damage, natural force damage and other outside force. When the Incident Report instructions are next open for comment AGA urges PHMSA to make similar changes to the Incident Report Form instructions.

Other Outside Force Damage:
Proposed changes to this section include expanding and precisely defining incidents that are considered to be damage outside of excavation. This includes damage by man-made or industrial fire, vehicles, boats and maritime vessels, previous mechanical damage unrelated to excavation, vandalism, terrorism and theft. AGA’s proposed definitions are similar to incident report definitions, with clearer delineations between each incident type.

Pipe, Joint or Weld Failure:
AGA’s proposed comments to the annual report definitions include the entirety of the original, but also expands the definitions to include language for material defects, design defects and fittings, following the incident report definitions.

Equipment Failure:
No change to the annual report definitions were proposed by AGA. AGA believes the Incident Report definition is unnecessarily long.

Incorrect operation:
The current definition in the current annual report is retained and expanded upon to state examples of leaks resulting in failure to follow procedures including improper valve selection, selection of equipment, inadvertent overpressurization, and also unintentional ignition of gas from welding. The definition is aligned with the Incident Report.

Other Cause:
This section was expanded with clearer instructions on what incidents should be included in this section if they do not fit in any others. The definition is almost identical to the Incident Report.
<table>
<thead>
<tr>
<th>Cause Category</th>
<th>Annual Report Definition (from proposed rule 2/13/13)</th>
<th>Incident Report Definition</th>
<th>Annual Report Leak Cause Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORROSION FAILURE</td>
<td>leak resulting from a hole in the pipe or other component that was caused by galvanic, bacterial, chemical, stray current, or other corrosive action.</td>
<td>Corrosion includes a leak or failure caused by galvanic, atmospheric, stray current, microbiological, or other corrosive action, and, for the purposes of this reporting, includes selective seam corrosion. A corrosion leak is not limited to a hole in the pipe. If the bonnet or packing gland on a valve or flange on piping deteriorates or becomes loose and leaks due to corrosion and failure of bolts, it is classified as Corrosion. (If the bonnet, packing, or other gasket has deteriorated before the end of its expected life but not due to corrosive action, it is classified as a Material Defect.)</td>
<td>A leak caused by galvanic, atmospheric, stray current, microbiological, or other corrosive action, and, for the purposes of this reporting, includes selective seam corrosion. A corrosion leak is not limited to a hole in the pipe. If the bonnet or packing gland on a valve or flange on piping deteriorates or becomes loose and leaks due to corrosion and failure of bolts, it is classified as Corrosion. (If the bonnet, packing, or other gasket has deteriorated before the end of its expected life but not due to corrosive action, it is classified as a Material Defect.)</td>
</tr>
<tr>
<td>NATURAL FORCE DAMAGE:</td>
<td>leak resulting from earth movements, earthquakes, landslides, subsidence, lightning, heavy rains/floods, washouts, flotation, mudslide, scouring, temperature, frost heave, frozen components, high winds, or similar natural</td>
<td>This category includes all outside forces attributable to causes NOT involving humans. Earth Movement NOT due to Heavy Rains/Floods refers to incidents caused by land shifts such as earthquakes, landslides, or subsidence, but not mudslides which are presumed to be initiated by heavy rains or floods. Heavy Rains/Floods refer to all water related incident. While mudslides involve earth movement, report them here since typically they are an effect of heavy rains or floods.</td>
<td>A leak caused by outside forces attributable to causes NOT involving humans, such as Earth Movement, Heavy Rains/Floods, Lightning, Temperature, Thermal stress, Frozen components, High Winds (Including damage caused by impact from objects blown by wind), etc. For further details see the Distribution Incident Report Instructions.</td>
</tr>
<tr>
<td>Cause Category</td>
<td>Annual Report Definition (from proposed rule 2/13/13)</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Lightning includes both damage and/or fire caused by a direct lightning strike and damage and/or fire as a secondary effect from a lightning strike in the area. An example of such a secondary effect would be a forest fire started by lightning that results in damage to a pipeline system asset which results in an incident. Temperature refers to those causes that are related to ambient temperature effects, either heat or cold, where temperature was the initial cause. Thermal stress refers to mechanical stress induced in a pipe or component when some or all of its parts are not free to expand or contract in response to changes in temperature. Frozen components would include incidents where components are inoperable because of freezing and those due to cracking of a piece of equipment due to expansion of water during a freeze cycle. High Winds includes damage caused by wind induced forces. Select this category if the damage is due to the force of the wind itself. Damage caused by impact from objects blown by wind would be reported as section G4 “Other Outside Force Damage”.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause Category</td>
<td>Annual Report Definition (from proposed rule 2/13/13)</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>EXCAVATION DAMAGE:</td>
<td>leak resulting from damage caused by earth moving or other equipment, tools, or vehicles. Include leaks from damage by operator’s personnel or contractor or people not associated with the operator.</td>
<td>This section covers damage inflicted by the operator, operator’s contractor, or entities unrelated to the operator during excavation that results in an immediate release of gas. Damage from outside forces OTHER than excavation that results in an immediate release, use G2 “Natural Force Damage” or G4 “Other Outside Force” as appropriate. For a strike or other damage to a pipeline or facility that results in a later release, report the incident in Section G4 as “Rupture or Failure Due to Previous Mechanical Damage.”</td>
<td>A leak resulting from damage inflicted by the operator, operator’s contractor, or entities unrelated to the operator during excavation that results in an immediate release of gas. Leaks due to damage from outside forces OTHER than excavation that results in an immediate release should be included under G2 “Natural Force Damage” or G4 “Other Outside Force” as appropriate. For a strike or other damage to a pipeline or facility that results in a later release, report the incident in Section G4 as “Rupture or Failure Due to Previous Mechanical Damage.”</td>
</tr>
<tr>
<td>OTHER OUTSIDE FORCE DAMAGE:</td>
<td>Include leaks caused by fire or explosion and deliberate or willful acts, such as vandalism.</td>
<td>This section covers incidents caused by outside force damage, other than excavation damage or natural forces. Nearby Industrial, Man-made or Other Fire/Explosion as Primary Cause of Incident applies to situations where the fire occurred before and caused the release. An example of such a failure would be an explosion/fire at a neighboring facility or structure that results in a release at the location of the incident. This section should not be used if the release</td>
<td>A leak resulting from outside force damage, other than excavation damage or natural forces such as • Nearby Industrial, Man-made or Other Fire/Explosion as Primary Cause of Incident (unless the fire was caused by natural forces, in which case the leak should be classified Natural Forces. Forest fires that are caused by human activity and result in a release should be reported as Other Outside Force), • Damage by Car, Truck, or Other Motorized</td>
</tr>
<tr>
<td>Cause Category</td>
<td>Annual Report Definition (from proposed rule 2/13/13)</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>occurred first and then the gas ignited. If the fire is known to have been started as a result of a lightning strike, the incident’s cause should be classified under Section G2, “Natural Force Damage.” Arson events directed at harming the pipeline or the operator should be reported as “Intentional Damage” in this section. Forest fires that are caused by human activity and result in a release should be reported in this section. Damage by Car, Truck, or Other Motorized Vehicle/Equipment NOT Engaged in Excavation. An example would be damage to a meter set caused by vehicle impact. Other motorized vehicles/equipment includes tractors, backhoes, bulldozers and other tracked vehicles, and heavy equipment that can move. Include under this sub-cause incidents caused by vehicles operated by the pipeline operator, the pipeline operator’s contractor, or a third party and specify the vehicle/equipment operator’s affiliation as appropriate. Pipeline incidents resulting from vehicular traffic loading or other contact should also be reported in this category. If the activity involved</td>
<td>Vehicle/Equipment NOT Engaged in Excavation.Leaks resulting from vehicular traffic loading or other contact (except repair as “Excavation Damage” if the activity involved digging, drilling, boring, grading, cultivation or similar activities. • Damage by Boats, Barges, Drilling Rigs, or Other Maritime Equipment or Vessels so long as those activities are not excavation activities. If those activities are excavation activities such as dredging or bank stabilization or renewal, the leak repair should be reported as “Excavation Damage”. • Previous Mechanical Damage NOT Related to Excavation. A leak caused by damage that occurred at some time prior to the release, including prior outside force damage of an unknown nature, prior natural force damage, and prior damage from other outside forces. Leaks resulting from damage sustained during construction, installation, or fabrication of the pipe or a weld should be reported as “Material</td>
<td></td>
</tr>
<tr>
<td>Cause Category</td>
<td>Annual Report Definition (from proposed rule 2/13/13)</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>digging, drilling, boring, grading, cultivation or similar activities, report in Section G3 “Excavation Damage”.</td>
<td>Failure of Pipe or Weld.” Leaks resulting from prior excavation damage should be reported as “Excavation Damage.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damage by Boats, Barges, Drilling Rigs, or Other Maritime Equipment or Vessels Set Adrift or Which Have Otherwise Lost Their Mooring. This sub-cause includes impacts by maritime equipment or vessels that have lost their moorings and are carried into the pipeline by the current. This sub-cause also includes maritime equipment or vessels set adrift as a result of severe weather events and carried into the pipeline by current or high winds. In such cases, also indicate the type of severe weather event. Do not report in this sub-cause incidents which are caused by impact of maritime equipment or vessels while they are engaged in their normal or routine activities; such incidents should be reported as “Routine or Normal Fishing or Other Maritime Activity NOT Engaged in Excavation” so long as those activities are not excavation activities. If those activities are excavation activities such as dredging or bank stabilization or renewal, the accident should be reported in Section G3, “Excavation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Intentional Damage/Vandalism
- Terrorism,
- Theft
<table>
<thead>
<tr>
<th>Cause Category</th>
<th>Annual Report Definition (from proposed rule 2/13/13)</th>
<th>Incident Report Definition</th>
<th>Annual Report Leak Cause Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Damage”. Routine or Normal Fishing or Other Maritime Activity NOT Engaged in Excavation. This sub-cause includes incidents due to shrimping, purseining, oil drilling, or oilfield workover rigs, including anchor strikes, and other routine or normal maritime-related activities UNLESS the movement of the maritime asset was due to a severe weather event (this type of damage should be reported under Damage by Boats, Barges, Drilling Rigs, or Other Maritime Equipment or Vessels Set Adrift or Which Have Otherwise Lost Their Mooring) or the incident was caused by excavation activity such as dredging of waterways or bodies of water (this type of incident should be reported under Section G3, “Excavation Damage.”). Previous Mechanical Damage NOT Related to Excavation. This sub-cause covers incidents where damage occurred at some time prior to the release and would include prior excavation damage, prior outside force damage of an unknown nature, prior natural force damage, and prior damage from other outside forces. Incidents resulting from damage sustained during</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause Category</td>
<td>Annual Report Definition (from proposed rule 2/13/13)</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>----------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>construction, installation, or fabrication of the pipe or a weld should be reported under Section G5, “Material Failure of Pipe or Weld.”</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
<td></td>
</tr>
<tr>
<td>Intentional Damage Vandalism means willful or malicious destruction of the operator’s pipeline facility or equipment. This category would include pranks, systematic damage inflicted to harass the operator, motor vehicle damage that was inflicted intentionally, and a variety of other intentional acts. Terrorism, per 28 C.F.R. § 0.85 General functions, includes the unlawful use of force and violence against persons or property to intimidate or coerce a government, the civilian population, or any segment thereof, in furtherance of political or social objectives. Operators selecting this item are encouraged to also notify the FBI. Theft means damage by any individual or entity, by any mechanism, specifically to steal, or attempt to steal, the transported gas or pipeline equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| PIPE, WELD, OR JOINT FAILURE : | leak resulting from failure of original sound material from force applied during | This section includes leaks, ruptures or other failures from a defect within the material of the pipe, component or joint due to faulty manufacturing | Leaks from a defect within the material of the pipe, component or joint due to faulty manufacturing procedures, defects resulting from poor |</p>
<table>
<thead>
<tr>
<th>Cause Category</th>
<th>Annual Report Definition (from proposed rule 2/13/13)</th>
<th>Incident Report Definition</th>
<th>Annual Report Leak Cause Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>construction that caused a dent, gouge, excessive stress, or other defect that eventually resulted in a leak. This includes leaks due to faulty wrinkle bends, faulty field welds, and damage sustained in transportation to the construction or fabrication site. Also include leak resulting from a defect in the pipe material, component, or the longitudinal weld or seam due to faulty manufacturing procedures. Leaks from material deterioration, other than corrosion, after exceeding the reasonable service life, are reported under Other</td>
<td>procedures, defects resulting from poor construction/installation practices, and in-service stresses such as vibration, fatigue and environmental cracking. Fitting means a device, usually metal, for joining lengths of pipe into various piping systems. It includes couplings, ells, tees, crosses, reducers, unions, caps and plugs. Material defect means an inherent flaw in the material or weld that occurred in the manufacture or at a point prior to construction, fabrication or installation. Design defect means an aspect inherent in a component to which a subsequent failure has been attributed that is not associated with errors in installation, i.e., is not a construction defect.” This could include, for example, errors in engineering design.</td>
<td>construction/installation practices, and in-service stresses such as vibration, fatigue and environmental cracking. Material defect means an inherent flaw in the material or weld that occurred in the manufacture or at a point prior to construction, fabrication or installation. Design defect means an aspect inherent in a component to which a subsequent failure has been attributed that is not associated with errors in installation, i.e., is not a construction defect.” This could include, for example, errors in engineering design.</td>
<td></td>
</tr>
<tr>
<td>Cause Category</td>
<td>Annual Report Definition (from proposed rule 2/13/13)</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>EQUIPMENT FAILURE</td>
<td>leak resulting from malfunction of control/relief equipment including valves, regulators, or other instrumentation; stripped threads or broken pipe couplings on nipples, valves, or mechanical couplings; or seal failures on gaskets, O-rings, seal/pump packing, or similar leaks.</td>
<td>This section includes malfunctions of control and relief equipment (typically the result of failed and leaking valves), failures of threaded components and broken pipe couplings, including O-Ring failures, Gasket failures, thread failures, and failures in packing. Malfunction of Control/Relief Equipment Examples of this type of failure include failures on compressors, meters, or regulator stations where the failure resulted from a crack in a component or threads of a component such as nipples, flanges, valve connections, line pipe collars, etc. Include a description of the nature of the failure and apparent cause in the narrative (Part H). Examples of this type of failure cause also include: overpressurization resulting from malfunction of control or alarm device; relief valve malfunction: and valves failing to open or close on command; or valves which opened or closed when not commanded to do so. If</td>
<td>Leaks caused by malfunctions of control and relief equipment including valves, regulators, or other instrumentation, failures of threaded components and broken pipe couplings, including O-Ring failures, Gasket failures, thread failures, and failures in packing or similar leaks.</td>
</tr>
<tr>
<td>Cause Category</td>
<td>Annual Report Definition (from proposed rule 2/13/13)</td>
<td>Incident Report Definition</td>
<td>Annual Report Leak Cause Definitions</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>INCORRECT OPERATION</td>
<td>leaks resulting from inadequate procedures or safety practices, or failure to follow correct procedures, or other operator error</td>
<td>These types of incidents most often occur during operating, maintenance or repair activities. Some examples of this type of failure are improper valve selection or operation, inadvertent overpressurization, or improper selection or installation of equipment. The unintentional ignition of the transported gas during a welding or maintenance activity would also be included in this sub-cause. These types of incidents often involve training or judgment errors.</td>
<td>Leaks resulting from inadequate procedures or safety practices, or failure to follow correct procedures, or other operator error. It includes leaks due to improper valve selection or operation, inadvertent overpressurization, or improper selection or installation of equipment. The unintentional ignition of the transported gas during a welding or maintenance activity would also be included in this sub-cause.</td>
</tr>
<tr>
<td>OTHER CAUSE</td>
<td>leak resulting from any other cause, such as exceeding the service life, not attributable to the above causes.</td>
<td>This section is provided for incident causes that do not fit in any of the main cause categories in Sections G1 through G7. Leaks resulting from materials deteriorating after the expected life of the materials are classified as “Other Cause”.</td>
<td>This section is provided for incident causes that do not fit in any of the main cause categories in Sections G1 through G7. Leak resulting from any other cause, such as exceeding the service life, not attributable to the above causes.</td>
</tr>
</tbody>
</table>
Part D, EXCAVATION DAMAGE:
AGA notes that “a. Number of Excavation Damages by Root Cause:” is the heading for the four lettered items that follow rather than the first of five items, therefore it should not labeled “a.” The format should be as shown below.

PHMSA proposes to require reporting of the root cause of excavation damages as follows:

Number of Excavation Damages by Root Cause:
- a. One-Call Notification Practices Not Sufficient: _______
- b. Locating Practices Not Sufficient: _______
- c. Excavation Practices Not Sufficient: _______
- d. Other:

AGA believes that PHMSA intended operators to follow the voluntary Common Ground Alliance (CGA) reporting definitions to report the new root cause information in Part D. AGA notes that the CGA seeks reporting of the apparent or first level route cause. AGA does not believe that it is CGA’s or PHMSA’s intent to have operators to perform exhaustive root cause investigations for the thousands of excavation damages that occur annually. The time and paperwork burden required to perform exhaustive investigations is not consistent with the paperwork burden submitted to the Office of Management and Budget for completing the annual report form.

To clarify this AGA believes the form and instructions should say, “Number of Excavation Damages by Root Cause category”. And the instructions can briefly explain that PHMSA is seeking the “apparent” root cause.

The Annual Report instructions do not provide examples of what types of causes go into each of these categories. The following are definitions from the Common Ground Alliance’s DIRT program:

One Call notification practices not sufficient. Examples:
- No notification made to the one-call center.
- Notification to the one-call center made but not sufficient: The excavator or caller who contacted the notification center did not provide sufficient information. Also includes situations where the excavator or caller did not provide sufficient advance notification time according to state law.
- Wrong information provided: An error occurred because an excavator or caller provided the wrong address for excavation to the one-call notification center, or there was a miscommunication between stakeholders.

Locating practices not sufficient. Examples:
- Facility could not be found/located: Type of facility, depth, or lack of records prevented locating of facility.
- Facility markings or location not sufficient: Includes all areas where marking was inaccurate or otherwise insufficient in designating the location of the buried facilities, but _NOT_ covered by the following choices found elsewhere in Part I:
 - Facility could not be found/located
 - Incorrect facility records/maps
 - Abandoned facility
 - Facility was not located or marked: No locating or marking was completed prior to excavation activities.
 - Incorrect facility records/maps: Incorrect facility records or maps led to an incorrect locate.
Excavation practices not sufficient
The excavator did not use proper care or follow the correct procedures when excavating near a facility. Examples:
• Failure to maintain clearance with powered equipment - as defined by applicable state regulations or underground facility owner.
• Failure to maintain the marks: The marks deteriorated or were lost and the excavator failed to request that they be restored/refreshed.
• Failure to support exposed facilities: Facility failed due to lack of support in accordance with generally accepted engineering practices or instructions provided by the facility operator.
• Failure to use hand tools where required.
• Failure to verify location by test hole (pot holing): Some state regulations define a "tolerance zone" around buried facilities and require that the accuracy of the facility marks be verified by exposing the facility by hand digging prior to excavation within the tolerance zone, or require hand digging or special precautions when working within the tolerance zone.
• Improper backfilling. Damage caused by improper materials (ex: large/sharp rocks) in the backfill or improper compaction of the backfill.

Other causes Examples:
• One-Call Center notification center error: Includes all issues related to the center such as incorrectly entered data, ticket transmission failures, stakeholder omissions (failure to transmit the ticket to a facility operator that should have received it), et al.
• Abandoned facility: An event caused by an abandoned facility issue. For example, a nearby abandoned facility may have been located instead of the active facility. Or, a facility may have been located as abandoned, but found active after the excavation exposed the facility.
• Deteriorated facility: Situations in which an excavation disrupts the soil around a facility resulting in damage, failure, or interruption of service. However, the facility was deteriorated (ex: corroded, graphitized, etc.) to the extent that the deterioration and not the excavation activity caused the facility issue.
• Previous damage: A significant period of time has passed from the actual damage to the failure or discovery of the damages.

Part E, Excess Flow Valve (EFV) Data:
Some operators voluntarily installed EFVs in service lines of new or fully replaced single family residential homes for years before the requirement was adopted into 49 CFR 192. AGA believes that it is PHMSA’s intent to have operators report the total number of EFVs in their system by estimating all of the pre-regulation EFVs installed and all of to the EFVs installed after the installation of EFVs was codified into regulation. PHMSA also wants the current annual installation of EFVs reported. AGA believes the language below will be better understood by operators, and more information regarding PHMSA’s intentions should be added to the instructions. All of the information in the annual report form is at the end of the year, so the use in this section of the form is redundant.

Total Number of EFVs on Single-family Residential Services Installed During Year _____
Estimated Total Number of EFVs in System At End Of Year _____
III. Conclusion

AGA appreciates the opportunity to comment. AGA believes its suggestions will provide clear and concise reporting of information for the Distribution Annual Report. AGA also believes that PHMSA should quickly move forward to establish a data quality and analysis group that will help ensure consistency in the data PHMSA collects and minimize the burden caused by frequent changes to PHMSA’s safety data reporting forms.

Respectfully Submitted by:

/s/

Philip Bennett
Senior Managing Counsel
American Gas Association
400 North Capitol Street, NW
Washington, D.C. 20001
(202) 824-7339
pbennett@aga.org

Date: April 15, 2013