I. Introduction

The American Gas Association, founded in 1918, represents more than 200 local energy companies that deliver clean natural gas throughout the United States. There are more than 71 million residential, commercial and industrial natural gas customers in the U.S., of which 92 percent — more than 65 million customers — receive their gas from AGA members. AGA is an advocate for natural gas utility companies and their customers and provides a broad range of programs and services for member natural gas pipelines, marketers, gatherers, international natural gas companies and industry associates. Today, natural gas meets almost one-fourth of the United States' energy needs.

AGA appreciates the opportunity to submit comments to the above referenced notice and request for comments published in the Federal Register on May 15, 2012 in volume 77, beginning at page 28669. In accordance with the Paperwork Reduction Act of 1995, PHMSA requested comments on a new one-time Information Collection (IC) on Excess Flow Valves (EFVs). PHMSA plans to request approval for this new information collection from the Office and Management and Budget (OMB). The collection involves a census of gas operators to gather data on operators’ experiences, practices, benefits, and costs associated with the use of EFVs. PHMSA believes this data is necessary to conduct a cost-benefit analysis for requiring the use of excess flow valves in services other than single family residential.

AGA supports the practical and reasonable expansion of EFVs to new and fully replaced service line applications other than single-family residences (SFR) as intended by Congress in Sec. 22.
of the "Pipeline Safety, Regulatory Certainty, and Job Creation Act of 2011". However, AGA comments herein, present persuasive evidence that requiring operators in the industry to complete the EFV Census is not warranted. AGA therefore suggests that PHMSA not seek Office of Management and Budget (OMB) approval for the EFV Census or if the request is submitted the OMB should reject the EFV Census in its entirety. AGA sees no modifications to the proposed EFV Census that would result in useful information being submitted by the 1235 operators that would receive the EFV Census. AGA believes a final regulation for expanding the use of EFVs can be accomplished more quickly and effectively without spending an extra year modifying the census, seeking OMB approval, collecting and analyzing census information before issuing a proposed rule. AGA sets forth the following argument against the approval of the EFV Census.

- AGA believes that the proposed EFV Census will not provide useful information for PHMSA in the evaluation of EFVs to applications other than service lines to SFR because the data requested in the EFV Census has not been historically captured by operators and there are no procedures, processes or mechanisms available to capture the requested data retrospectively.

- Requiring 1235 operators to complete the 23 page census will unnecessarily burden operators with costs and will occupy the time of technical personnel who could otherwise be engaged in operations and safety activities. AGA estimates that the EFV Census could take 40 hours versus the 16 hours estimated by PHMSA. That would raise the labor costs of the EFV Census from $2.1 to $5.25 million.

- A comprehensive cost benefit analysis is not necessary to promulgate a final regulation for the expanded use of EFVs because the stakeholders that will have to supply and install EFVs have already reached consensus on the practical and technical considerations that are necessary for a final regulation that is consistent with the mandate from Congress and NTSB safety recommendations.

- Industry believes that cost benefit analyses are important in evaluating regulatory alternatives. However, the incremental cost per installation of EFVs is relatively minimal. There are relatively few incidents in the industry and most incidents would not likely be affected by the expanded use of EFVs. If the suggested scope for implementing the expansion of EFVs is adopted, AGA believes that the relatively
small incremental cost increases to industry and possible proportional benefits do not warrant completing a comprehensive census or elaborate regulatory impact analysis.

- Finally, the AGA Board of Directors voted to commit their companies to install EFVs beyond single family residential services by June 2013. The information is in the “AGA’s Commitment to Enhancing Safety” that is enclosed as Exhibit 1. The overwhelming majority of the industry is committed to promptly expanding the use of EFVs. The EFV manufacturers and operators have reached consensus on how to safely implement the expansion. The EFVs will generally be installed on facilities that are under state jurisdiction. Therefore, AGA has provided the National Association of State Pipeline Safety Regulators (NAPSR) with the proposed scope and the regulatory amendments that will be needed. AGA has attached a copy of the proposed regulatory amendments as Exhibit 2 of these comments.

In summary, industry has shown a commitment to promptly move forward with the expanded use of EFVs. AGA believes approval of the request for the census on EFVs beyond SFR will not provide useful information and only result in the delay of a final rule and the installation of EFVs, where appropriate, in small multi-family, small commercial services. AGA understands that PHMSA has an extremely large regulatory workload. In the interest of enhancing pipeline safety, AGA believes that PHMSA can reduce the burden on its staff by omitting the unnecessary EFV Census and immediately consider the proposed regulatory language, contained herein, to expand the use of EFVs.

II. Detailed Comments

Background
Before presenting the responses to specific questions posed in the EFV Census Notice, AGA summarizes the legislative and regulatory history associated with the discussion to expand the use of EFVs beyond SFR services.

On June 22, 2001, The National Transportation Safety Board (NTSB) issued Safety Recommendation P-01-2 to the Research and Special Programs Administration (RSPA) that included the following recommendation: “Require that excess flow valves (EFVs) be installed in all new and renewed gas lines, regardless of a customer’s classification, when the operating
conditions are compatible with readily available valves.” Since the NTSB issued Safety Recommendation P-01-2, there has been considerable progress related to the installation of EFVs on new and replaced service lines. In 2006, Congress passed the Pipeline Integrity, Protection, Enforcement and Safety Act (PIPES Act) of 2006 which mandated that operators of distribution systems install EFVs after June 1, 2008 on all new and replacement services for service lines serving single family residences. The PIPES Act further mandated that the EFV requirements be incorporated into the integrity management rulemaking for distribution pipeline systems. Although some operators have been installing EFVs for as many as 30 years, all distribution operators have been installing EFVs since June 1, 2008, as mandated by the 2006 PIPES Act, on all new and replacement service lines serving single family residences that operate continuously at a pressure above 10 psig and are not connected to a gas system with a history of gas contaminants. Based on information provided by EFV manufacturers, AGA estimates that over nine million EFVs have been installed by operators on natural gas service lines.

On December 4, 2009, PHMSA issued the final rule for Gas Distribution Pipeline Integrity Management (DIMP) which requires operators of gas distribution systems to install EFVs on all new and replaced service lines to single family residences that operate continuously at greater than 10 psig, without a history of contaminants. Further, the DIMP regulation requires operators to evaluate and rank risks to their distribution systems and identify and implement measures to address those risks. Gas operators typically consider the use of EFVs as one of the “additional and accelerated actions” to mitigate some of the risks identified on distribution systems.

In December 2011, Congress passed the “Pipeline Safety, Regulatory Certainty, and Job Creation Act of 2011” (Pipeline Safety Act of 2011) which was signed into law on January 3, 2012. Section 22 of the Pipeline Safety Act of 2011 mandates that DOT issue a final report on its evaluation of the NTSB recommendation (P-01-2) on excess flow valves in applications other than service lines to single-family residential customers and to issue regulations, if appropriate, requiring the use of EFVs, or equivalent technology, where economically, technically, and operationally feasible on new or entirely replaced distribution branch services, multi-family facilities, and small commercial facilities.
In the EFV Census Notice, PHMSA expressed its belief in the need for comprehensive data on the operations, costs, and benefits of EFVs, as well as information on how those operations, costs, and benefits may vary for other customer classification service lines (in addition to single family residence service lines), in order to comply with the Congressional mandate contained in the Pipeline Safety Act of 2011 and address the NTSB Safety Recommendation (P-01-2). As stated in the Notice, the information collection is intended to provide the data necessary to conduct a cost-benefit analysis of EFVs for different customer classification service lines.

While AGA understands PHMSA’s desire to use comprehensive data on the operations, costs, and benefits of EFVs, as well as information on how those operations, costs, and benefits may vary for other customer classification service lines (in addition to single family residence service lines), in order to evaluate the use of EFVs in applications other than service lines to SFR, there are critical, fundamental issues with the proposed EFV Census that will prevent it from providing useful data to PHMSA. Operators that have reviewed the proposed EFV Census Form have concluded that much of the data requested is not available and many portions of the EFV Census will require technical staff to engage in intensive record searches. While AGA notes that over nine million EFVs have been installed in new and replaced natural gas service lines, they have been installed almost exclusively on SFR applications. There is virtually no industry experience related to the installation of EFVs beyond SFR applications. Perhaps more significantly, the EFV Census contains 128 questions, many of which include sub-questions, requesting a significant amount of detailed data relative to EFV and curb valve, installations, with many of the questions focused on customer applications beyond SFR. For example, the EFV Census requests detailed information regarding the installation and performance of EFVs and curb valves as defined by the following seven “Service Categories”:

- Single Family Residential (150-350 SCFH)
- Small Multi-Family Residential (≤ 1000 SCFH)
- Large Multi-Family Residential (> 1000 SCFH)
- Small Non-Residential Space and Water Heat Customers (≤ 1000 SCFH)
- Large Non-Residential Space and Water Heat Customers (> 1000 SCFH)
- Other Small Non-Residential Customers (≤ 1000 SCFH)
- Other Large Non-Residential Customers (> 1000 SCFH)
There is a critical issue with the EFV Census Form that will prevent operators from responding with useful data - operators do not have the customer profile and equipment/load data (e.g. Small Non-Residential Space and Water Heat Customers vs. Other Small Non-Residential Customers) necessary to allow the distribution system (service lines) to be categorized according to the seven Service Categories, which is necessary in order to respond to the EFV Census. Extensive work by engineers and other technical staff will be needed to attempt to organize data into the categories requested in the EFV Census. In addition, it is also not possible for operators to classify the population of EFVs and/or curb valves installed over many years according to the seven defined Service Categories. This data is not available. Finally, the EFV Census Form requests detailed performance and experiential data associated with EFVs and curb valves as classified by the seven Service Categories. It is not possible for operators to produce or categorize this data retrospectively. For example, in question 10, the EFV Census requests the number of EFV-feasible service lines experiencing a complete break in 2010 and again in 2011, by Service Category. This information is not recorded by operators and is not available. There are numerous other examples available. In addition, questions 51, 52, 54, & 55 request information relative to costs that occur “if a curb valve fails to reset.” These questions are not meaningful because curb valves are manually operated flow interruption devices and do not “reset” automatically.

As noted above, PHMSA issued the DIMP final rule on December 4, 2009. In conjunction with the DIMP final rule, PHMSA revised the Distribution Annual Report to allow the reporting of DIMP performance metrics and also the number of EFVs installed. Part E of Form PHMSA F 7100.1-1 (01/2011) requests only two metrics related to the installation of EFVs (1) Total Number of EFVs on Single-Family Residential Services Installed During Year; and (2) Estimated Number of EFVs In System At End Of year. The data requested in the EFV Census form is significantly more detailed than any EFV data previously requested by PHMSA and operators are unable to provide this information retrospectively. There was previously no justification for recording and segmenting EFV performance and experiential data based on these Service Categories.

Industry’s Commitment to Promptly Expand the Use of EFVs
AGA is strongly committed to the safe, reliable and cost effective delivery of natural gas to the millions of residential, commercial and industrial natural gas customers served by our member
companies and supports the Congressional EFV mandate prescribed in the Pipeline Safety Act of 2011. While AGA cautions against the broad expansion of EFVs to other classes of customers beyond SFR, we believe that there are applications that are reasonable and satisfy the economic, technical and operational feasibility criteria established by Congress. AGA’s Board of Directors recently approved “AGA’s Commitment to Enhancing Safety.” Contained in the document is the commitment of member companies to expand the installation of EFVs to new and fully replaced branch services, small multi-family facilities, and small commercial facilities where economically, technically and operationally feasible. Specifically, AGA and its member companies support the installation of EFVs on new and entirely replaced service lines in the following applications:

1) A service line to a single family residence (SFR);
2) A branched service line to a SFR installed concurrently with the primary SFR service line. (A single EFV may be installed to protect both service lines);
3) A branched service line to a SFR installed off a previously installed SFR service line that does not contain an EFV;
4) Multi-family installations, including duplexes, triplexes and four-plexes with known customer loads at time of service installation, based on installed meter capacity, up to 1,000 standard cubic feet per hour (SCFH) per service and where the customer load is not expected to increase significantly over time; or
5) A single small commercial customer with known customer load at the time of service installation, based on installed meter capacity, up to 1,000 SCFH served by a single service line and where the customer load is not expected to increase significantly over time.

Exhibit 2 has proposed revisions to §192.381 and §192.383 that would support the expansion of EFVs to new and replaced service lines to customers as recommended above. The proposed language has been reviewed by EFV service providers and members of NAPSR. AGA offers the information to PHMSA for its review.

AGA supports the installation of EFVs in the applications defined above unless one or more of the following conditions is present (consistent with the 2006 PIPES Act and the existing exceptions delineated in §192.383):
1) The service line does not operate at a pressure of 10 psig or greater throughout the year;
2) The operator has prior experience with contaminants in the gas stream that could interfere with the EFV’s operation or cause loss of service to a customer;
3) An EFV could interfere with necessary operation or maintenance activities, such as blowing liquids from the line; or
4) An EFV meeting industry performance standards is not commercially available

AGA believes that the installation of EFVs on the new and fully replaced service applications proposed above satisfies both the Congressional mandate contained in the Pipeline Safety Act of 2011 with respect to the use of EFVs where economically, technically and operationally feasible for new or entirely replaced distribution branch services, multi-family facilities and small commercial facilities and the NTSB EFV Recommendation. It is significant to note that based on preliminary analyses conducted by several member companies, AGA believes that the application of EFVs to the classes of customers proposed above will encompass greater than 95% of all new and replaced service lines in the nation (95% of the lines operating continuously throughout the year at a pressure of 10 psig or more that do not have a history of gas contaminants) while avoiding the complications and unintended consequences associated with inadvertent interruption of service to business-critical gas supply applications and those installations that are potentially subject to significant changes in customer loads.

III. AGA Responses to Specific Questions Contained in the EFV Census Notice

AGA appreciates the opportunity to provide detailed comments relative to the following specific data requests;

Comments are invited on:

(a) The need for the proposed collection of information for the proper performance of the functions of the agency, including whether the information will have practical utility;
AGA Response: AGA understands PHMSA’s desire to gather enhanced data on operators’ experiences, practices, benefits, and costs with EFVs in order to assist in the evaluation and conduct a cost-benefit analysis regarding the application of EFVs to other than service lines to SFR. However, the limited number of issues and relative small incremental cost involved for the use of EFVs in the proposed applications make the use of a one-time EFV Census inappropriate. Additionally, operators will require a difficult and costly effort to respond to the EFV Census. The EFV Census Form repeatedly requests data that is not available to natural gas distribution operators or is contained in records that cannot readily extract the information in the categories PHMSA requested. The EFV Census will impose a significant burden to operators and the responses from operators will not provide practical utility for PHMSA’s evaluation of EFVs to other applications.

(b) The accuracy of the agency's estimate of the burden of the proposed collection of information, including the validity of the methodology and assumptions used;

AGA Response: AGA believes the EFV Census Notice significantly underestimates the burden to operators. Operators currently do not have processes, procedures or databases in place to segment, capture and record the data requested in the EFV Census. The EFV Census requests responses to historical experiences regarding EFV, and curb valve, behavior and performance that is unavailable. It is reasonable to conclude that operators will need an average of 40 hours rather than the 16 hours suggested in the estimate. Engineers or technical personnel would have to complete the data searches for the requested information. The annual cost of an engineer with benefits and overhead is reasonably assessed at $200,000. AGA estimates that the cost of the EFV Census will be $5.25 million. For the cost of the census, approximately 350,000 EFVs can be installed or 5 miles of cast iron pipe can be replaced.

(c) Ways to enhance the quality, utility, and clarity of the information to be collected; and

AGA Response: The proposed EFV Census contains significant problems and will not produce data that meets the desired criteria of quality, utility and clarity of the information. The types of information requested could only be captured and recorded on
a prospective basis at considerable burden to operators. This would not be useful since the EFV Census Notice defines this effort as a “One-Time collection.” AGA has provided a proposal for the expansion of EFVs beyond SFR applications that eliminates the need for the EFV Census and satisfies the Congressional intent of being economically, technically, and operationally feasible.

(d) Ways to minimize the burden of the collection of information on those who are to respond, including the use of appropriate automated, electronic, mechanical, or other technological collection techniques.

AGA Response: As noted in AGA’s response to this notice, the collection of information required by the EFV Census would significantly burden operators with no appreciable benefit to PHMSA’s effort to gather enhanced data on operator’s experiences, practices, benefits, and costs with EFVs in order to conduct a cost-benefit analysis regarding the application of EFVs to service lines other than SFR. There are no meaningful ways for PHMSA to minimize the burden of this one-time information collection process.

IV. Conclusion

AGA appreciates the opportunity to comment on the notice and request for comments regarding “Information Collection Activities, Excess Flow Valve Census” published by PHMSA in the May 15, 2012 Federal Register. AGA has provided comments and recommendations that will create a practical path forward to meet the Congressional intent for expansion of EFVs to applications other than single-family residences as mandated by the “Pipeline Safety, Regulatory Certainty, and Job Creation Act of 2011” and satisfy NTSB Recommendation P-01-2. AGA’s Board and member companies commit to “Expand the use of excess flow valves to new and fully replaced branch services, small multi-family facilities, and small commercial facilities where economically, technically and operationally feasible.”

AGA has provided specific applications beyond SFR where we believe the use of EFVs would be economically, technically and operationally feasible. AGA has also provided proposed revisions to the regulatory language contained in §192.381 and §192.383 consistent with the expanded use of EFVs for new and fully replaced service lines to the classes of customers defined above. Based on evaluations conducted by several AGA member companies, the
expansion of EFVs to the customers defined above will encompass greater than 95% of all new and replaced natural gas service lines system-wide without adversely impacting the reliability of service to customers.

AGA believes that the proposed EFV Census will not provide useful information for PHMSA in the evaluation of EFVs to applications other than service lines to SFR “where economically, technically and operationally feasible” because the data requested in the EFV Census has not been historically captured by operators and there are no procedures, processes or mechanisms available to capture the requested data retrospectively. Therefore, AGA requests that PHMSA not seek OMB approval of the EFV Census or that if the EFV Census is submitted the OMB should reject the census in its entirety.

Respectfully submitted,

Date:

AMERICAN GAS ASSOCIATION

By: ______________________

Christina Sames

For further information, please contact:

Christina Sames Philip Bennett
Vice President Senior Managing Counsel,
Operations and Engineering Operations Safety
American Gas Association American Gas Association
400 North Capitol Street, NW 400 North Capitol Street, NW
Washington, D.C. 20001 Washington, D.C. 20001
(202) 824-7214 (202) 824-7339
csames@aga.org pbennett@aga.org
AGA’s Commitment to Enhancing Safety

AGA and its members are dedicated to the continued enhancement of pipeline safety. As such, we are committed to proactively collaborating with public officials, emergency responders, excavators, consumers, safety advocates and members of the public to continue to improve the industry’s longstanding record of providing natural gas service safely and effectively to 177 million Americans. AGA and its members support the development of reasonable regulations to implement new federal legislation as well as the National Transportation Safety Board safety recommendations.

Below are voluntary actions that are being addressed by AGA or individual operators to help ensure the safe and reliable operation of the nation’s 2.4 million miles of pipeline which span all 50 states representing diverse regions and operating conditions. In addressing these actions, AGA and its individual operators recognize the significant role that their state regulators or governing body will play in supporting and funding these actions.

It is the consensus of AGA members that the actions listed below enhance safety and gas utility operations when implemented as an integral part of each operator’s system specific safety actions. However, both the need to implement and the timing of any implementation of these actions will vary with each operator. Each operator serves a unique and defined geographic area and their system infrastructures vary widely based on a multitude of factors, including facility condition, past engineering practices and materials. Each operator will need to evaluate the actions in light of system variables, the operator’s independent integrity assessment system, risk analysis and mitigation strategy and what has been deemed reasonable and prudent by their state regulators. It is recognized that not all of these recommendations will be applicable to all operators due to the unique set of circumstances that are attendant to their specific systems.

Building Pipelines for Safety

Construction
- Expand requirements of the Operator Qualification (OQ) rule to include new construction of distribution and transmission pipelines.
- Review established oversight procedures associated with pipeline construction to ensure adequacy and confirm that operator construction practices and procedures are followed.

Emergency Shutoff Valves
- Support the use of a risk based approach to the installation of automatic and/or remote control sectionalizing block valves where economically, technically and operationally feasible on transmission lines that are being newly constructed or entirely replaced.
- Develop guidelines for consideration of the use of automatic and/or remote control sectionalizing block valves on transmission lines that are already in service. Work collaboratively with appropriate regulatory agencies and policy makers to develop these criteria.
- Expand the use of excess flow valves to new and fully replaced branch services, small multi-family facilities, and small commercial facilities where economically, technically and operationally feasible.

Operating Pipelines Safely

Integrity Management
- Continue to advance integrity management programs and principles to mitigate system specific risks. This includes operational activities as well as the repair, replacement or rehabilitation of pipelines and associated facilities where it will most improve safety and reliability.
- Collaborate with stakeholders to develop and promote effective cost-recovery mechanisms to support pipeline assessment, repair, rehabilitation, and replacement programs.
- Develop industry guidelines for data management to advance data quality and knowledge related to pipeline integrity.
- Support development of processes and guidelines that enable the tracking and traceability of new pipeline components.

Excavation Damage Prevention
- Support strong enforcement of the 811 – Call Before You Dig program through state damage prevention laws.
- Improve the level of engagement between the operator and excavators working in the immediate vicinity of the operator’s pipelines.

Enhancing Pipeline Safety

Safety Knowledge Sharing
- Review programs currently utilized for the sharing of safety information. Identify and implement models that will enhance safety knowledge exchange among operators, contractors, government and the public.

Stakeholder Engagement and Emergency Response
- Evaluate methods to more effectively communicate with public officials, excavators, consumers, safety advocates and members of the public about the presence of pipelines. Implement tested and proven communication methods to enhance those communications.
- Partner with emergency responders to share appropriate information and improve emergency response coordination.

Pipeline Planning Engagement
- Work with a coalition of Pipelines and Informed Planning Alliance (PIPA) Guidance stakeholders to increase awareness of risk based land use options and adopt existing PIPA recommended best practices.

Advancing Technology Development
- Increase investment, continue participation, and support research, development and deployment of technologies to improve safety. Evaluate and appropriately implement new technological advances.
Gas Utility Industry Actions To Be Implemented

<table>
<thead>
<tr>
<th>Action</th>
<th>Target Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm the established MAOP of transmission pipelines</td>
<td>On an aggregate basis of AGA member companies, complete > 50% of class 3 & 4 locations + class 1&2 HCAs: 7/3/12</td>
</tr>
<tr>
<td>Review and revise as necessary established construction procedures to provide for appropriate (risk-based) oversight of contractor installed pipeline facilities.</td>
<td>Remaining class 1&2 by 7/3/15</td>
</tr>
<tr>
<td>Under DIMP, evaluate risk associated with trenchless pipeline techniques and implement initiatives to mitigate risks</td>
<td>Trans: 12/31/12</td>
</tr>
<tr>
<td>Under DIMP, identify distribution assets where increased leak surveys may be appropriate</td>
<td>Dist: 12/31/13</td>
</tr>
<tr>
<td>Integrate applicable provisions of AGA’s emergency response white paper and checklist into emergency response procedures</td>
<td>12/31/12</td>
</tr>
<tr>
<td>Extend Operator Qualification program to include tasks related to new main & service line construction</td>
<td>6/30/13</td>
</tr>
<tr>
<td>Expand EFV installation beyond single family residential homes</td>
<td>6/30/13</td>
</tr>
<tr>
<td>Incorporate an Incident Command System (ICS) type of structure into emergency response protocols</td>
<td>6/30/13</td>
</tr>
<tr>
<td>Extend transmission integrity management principles outside of HCAs using a risk-based approach</td>
<td>70% of population within PIR by 2020; 1&2 by 2030</td>
</tr>
<tr>
<td>Implement applicable portions of AGA’s technical guidance documents: 1) Oversight of new construction tasks to ensure quality; 2) Ways to improve engagement between operators & excavators</td>
<td>Within 1 yr of AGA guidance</td>
</tr>
<tr>
<td>Begin risk-based evaluation on the use of ASVs, RCVs or equivalent technology on transmission block valves in HCAs</td>
<td>Within 6 months of Comptroller General study</td>
</tr>
<tr>
<td>Implement appropriate meter set protection practices identified through the Best Practices Program</td>
<td>Within 6 months of program results</td>
</tr>
</tbody>
</table>

* Target dates are based on an operator’s evaluation of these actions in light of system variables, the operator’s independent integrity assessment, risk analysis, and mitigation strategy. Target dates also assume state regulatory approval that action is prudent and reasonable and therefore recoverable in rates.*

Gas Utility Industry Actions That Exceed 49 CFR Part 192

<table>
<thead>
<tr>
<th>Action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorporate systems and/or processes to reduce human error to enhance pipeline safety</td>
<td></td>
</tr>
<tr>
<td>Advocate programs to accelerate the risk-based repair, rehabilitation and replacement of pipelines</td>
<td></td>
</tr>
<tr>
<td>Support development of processes and guidelines that enable tracking and traceability of pipeline components</td>
<td></td>
</tr>
<tr>
<td>Encourage participation in One-Call by all underground operators and excavators</td>
<td></td>
</tr>
<tr>
<td>Influence and/or support state legislation to strengthen damage prevention programs</td>
<td></td>
</tr>
<tr>
<td>Use industry training facilities and evaluate opportunities to expand outreach and education programs to internal and external stakeholders</td>
<td></td>
</tr>
<tr>
<td>Support and enhance damage prevention programs through outreach, education, intervention and enforcement</td>
<td></td>
</tr>
<tr>
<td>Use a risk-based approach to improve excavation monitoring</td>
<td></td>
</tr>
<tr>
<td>Develop, support, enhance and promote CGA initiatives targeted at damage prevention, including data submission and 811</td>
<td></td>
</tr>
<tr>
<td>Support public awareness programs targeted at damage prevention</td>
<td></td>
</tr>
<tr>
<td>Continue AGA Safety Committee initiatives, such as sharing lessons learned through the Safety Information Resource Center, safety alerts through the AGA Safety Alert System, safety communications with customers and supporting AGA's Safety Culture Statement</td>
<td></td>
</tr>
<tr>
<td>Explore ways to educate, engage and provide appropriate information to stakeholders to increase pipeline public awareness</td>
<td></td>
</tr>
<tr>
<td>Conduct organizational response drills to improve emergency preparedness</td>
<td></td>
</tr>
<tr>
<td>Participate in state, regional and national multi-agency emergency response training exercises</td>
<td></td>
</tr>
<tr>
<td>Reach out to emergency responder community in order to enhance emergency response capabilities</td>
<td></td>
</tr>
<tr>
<td>Verify participation in a mutual assistance program, if appropriate; integrate into emergency response plans</td>
<td></td>
</tr>
<tr>
<td>Collaborate with stakeholders near existing transmission lines to increase awareness/adoptions of appropriate PIPA recommended best practices</td>
<td></td>
</tr>
<tr>
<td>Promote benefits of R&D funding. Support R&D investment, pilot testing and technology implementation</td>
<td></td>
</tr>
<tr>
<td>Support technology development and deployment in critical applications</td>
<td></td>
</tr>
<tr>
<td>Collaborate on R&D</td>
<td></td>
</tr>
</tbody>
</table>
AGA’s Commitment to Enhancing Safety: AGA Actions

ACTIONS COMPLETED

- Implement discussion groups to address safety issues including discussion groups for employee technical training, material supply chain issues, DIMP implementation, public awareness, work management and GPS/GIS
- Participate in 2012 DOT Automatic Shut-off Valve and Remote Control Valve Workshop
- Develop, with INGAA and API, a public document to explain ratemaking mechanisms used for pipeline infrastructure
- Create a Safety Information Resources Center for the sharing of safety information
- Hold regional operations executives’ roundtables to discuss safety initiatives
- Sponsor workshop with INGAA and National Association of State Fire Marshals (NASFM) on emergency response
- Develop a technical note on industry considerations for emergency response plans
- Develop Emergency Response Resource center with a streamlined mutual assistance program
- Develop a task group comprised of AGA staff and members that will work closely with Pipelines and Informed Planning Alliance (PIPA) to ensure AGA member concerns are addressed in joint PIPA initiatives
- Work with INGAA, research consortiums and other pipeline trade associations to provide the NTSB with a compilation of the progress that has been made in advancing in-line inspection technology
- Host a roundtable focused on operator experience and lessons learned: 2012 Operations Conference
- Work with INGAA, API, AOPL, Canadian Gas Association and Canadian Energy Pipeline Association on a comprehensive safety management study that explores initiatives currently utilized by other sectors and the pipeline industry.

ONGOING ACTIONS

- Promote the use of innovative rate mechanisms for faster repair, rehabilitation or replacement.
- Maintain a clearinghouse on effective cost-recovery mechanisms that states have used to fund infrastructure repair, replacement and rehabilitation projects.
- Support legislation that strengthens enforcement of damage prevention programs and 811
- Support the Common Ground Alliance, use of 811 and other programs that address excavation damage
- Continue the work of the AGA Best Practices Programs to identify superior performing companies and innovative work practices that can be shared with others to improve operations and safety.
- Continue the Plastic Pipe Database Committee’s work to collect and analyze plastic material failures
- Promote the AGA Safety Culture Statement and a positive safety culture throughout the natural gas industry
- Conduct workshops, teleconferences and other events to share information including pipeline safety reauthorization, DIMP/TIMP, fitness for service, records, in-line inspection, emergency response, and other key safety initiatives
- Hold an annual executive leadership safety summit.
- Recognize statistical top safety performers, promote safety performance and encourage knowledge sharing through AGA Safety Awards
- Support PHMSA and NAPSR workshops and other events
- Search for new and innovative ways to inform, engage and provide appropriate information to stakeholders, including emergency responders, public officials, excavators, consumers and safety advocates, and members of the public living in the vicinity of pipelines
- Participate in the Pipeline Safety Trust’s annual conference to provide information on distribution and intrastate transmission pipelines, AGA and industry initiatives, and receive input
- Work with PHMSA to establish time limits for telephonic or electronic notice of reportable incidents to the National Response Center after the time of confirmed discovery by operator that an incident meets PHMSA incident reporting requirements
- Build an active coalition of AGA member representatives to work with PHMSA and other stakeholders to implement PIPA recommended practices pertaining to encroachment around existing transmission pipelines
- Advocate to state commissioners the inclusion of research funding in rate cases in an effort to increase overall funding for R&D
- Work with PHMSA and other stakeholders on opportunities to increase R&D funding and deployment of technologies
- Advocate acceptance of technologies that can improve safety
AGA’s Commitment to Enhancing Safety: AGA Actions Continued

ACTIONS WITH TARGET DATES

- Develop guidance to determine a distribution or transmission pipeline’s fitness for service and MAOP, and the critical records needed for that determination. **(5/30/12)**
- Create a Safety Alert Notification System that will allow AGA or its members to quickly notify other AGA members of safety issues that require immediate attention. **(5/30/12)**
- Develop a more comprehensive technical paper that presents benefits and disadvantages of the installation of ASV/RCV block valves on new, fully replaced and existing transmission pipelines. **(9/30/12)**
- Create technical guidance for oversight of new construction tasks to ensure quality. **(12/31/12)** (Track progress of industry’s implementation of guidelines and summarize results annually)
- Utilize DIMP to evaluate the risks associated with trenchless pipeline techniques and implement, where necessary, initiatives to prevent and mitigate those risks. **(12/31/12)**
- Based on the results of the safety management study, identify and begin to implement initiatives that will enhance the appropriate sharing of safety information. **(12/31/12)**
- Include meter protection in 2013 AGA Distribution Best Practices Program with results. **(9/30/13)**

ACTIONS – TARGET DATES NOT APPLICABLE

- Work with PHMSA and distribution operators on ways to address risk to meters from vehicular damage, natural and other outside forces.
- Engage PHMSA and NAPSR in discussions on whether TIMP should be expanded beyond HCAs and the benefits and challenges of applying integrity management principles to additional areas.
- Highlight in DOT workshops, NAPSR meetings and discussions with Government Accountability Office that: 1) Many AGA members are required to manage DIMP and TIMP programs that overlap. The effectiveness, inefficiencies and duplication of multiple integrity management programs must be explored. 2) Low-stress pipelines operating below 30% SMYS should be treated differently.
- Work with industry and regulators to evaluate how the grandfather clause can be modified to reduce and/or effectively eliminate its use for transmission pipelines.
- Work with other stakeholders to develop potential technological solutions that allow for tracking and traceability of new pipeline components (pipe, valves, fittings and other appurtenances attached to the pipe).
- Develop guidelines that provide for an improved level of engagement between operators and excavators.
- Work with other stakeholders to improve pipeline safety data collection and analysis, convert data into meaningful information, determine opportunities to improve safety based on data analysis, identify gaps in the data collected by PHMSA and others, and communicate consistent messages based on the data.
- Develop publications dedicated to improving safety and operations
- Pilot application of PIPA guidelines with select member utilities.
§ 192.381 Service lines: Excess flow valve performance standards.
(a) Excess flow valves to be used on single residence service lines that operate continuously throughout the year at a pressure not less than 10 p.s.i. (69 kPa) gage must be manufactured and tested by the manufacturer according to an industry specification, or the manufacturer's written specification, to ensure that each valve will:
(1) Function properly up to the maximum operating pressure at which the valve is rated;
(2) Function properly at all temperatures reasonably expected in the operating environment of the service line;
(3) At 10 p.s.i. (69 kPa) gage:
 (i) Close at, or not more than 50 percent above, the rated closure flow rate specified by the manufacturer; and
 (ii) Upon closure, reduce gas flow—
 (A) For an excess flow valve designed to allow pressure to equalize across the valve, to no more than 5 percent of the manufacturer's specified closure flow rate, up to a maximum of 20 cubic feet per hour (0.57 cubic meters per hour). Note: New limits developed in consultation with manufacturers; or
 (B) For an excess flow valve designed to prevent equalization of pressure across the valve, to no more than 0.4 cubic feet per hour (.01 cubic meters per hour); and
(4) Not close when the pressure is less than the manufacturer's minimum specified operating pressure and the flow rate is below the manufacturer's minimum specified closure flow rate.
(b) An excess flow valve must meet the applicable requirements of Subparts B and D of this part.
(c) An operator must mark or otherwise identify the presence of an excess flow valve in the service line.
(d) An operator shall locate an excess flow valve as near as practical to the fitting connecting the service line to its source of gas supply.
(e) An operator should not install an excess flow valve on a service line where the operator has prior experience with contaminants in the gas stream, where these contaminants could be expected to cause the excess flow valve to malfunction or where the excess flow valve would interfere with necessary operation and maintenance activities on the service, such as blowing liquids from the line.

§ 192.383 Excess flow valve installation.
(a) Definitions. As used in this section:
Replaced service line means a gas service line where the fitting that connects the service line to the main is replaced or the piping connected to this fitting is replaced.
(b) Installation required. An excess flow valve (EFV) installation must comply with the performance standards in §192.381. The operator must install an EFV on any new or replaced service line serving categories of customers defined below after XXXX XX, 20XX:

(1) A service line to a single family residence (SFR);
(2) A branched service line to a SFR installed concurrently with the primary SFR service line. (A single EFV may be installed to protect both service lines);
(3) A branched service line to a SFR installed off a previously installed SFR service line that does not contain an EFV;
(4) Multi-family installations, including duplexes, triplexes and four-plexes with known customer loads at time of service installation, based on installed meter capacity, up to 1,000 standard cubic feet per hour (SCFH) per service and where the customer load is not expected to increase significantly over time; or
(5) A single small commercial customer with known customer load at the time of service installation, based on installed meter capacity, up to 1,000 SCFH served by a single service line and where the customer load is not expected to increase significantly over time.

(c) Exceptions to excess flow valve installation requirement.
An operator need not install an excess flow valve if one or more of the following conditions is present:

(1) The service line does not operate at a pressure of 10 psig or greater throughout the year;
(2) The operator has prior experience with contaminants in the gas stream that could interfere with the EFV's operation or cause loss of service to a residence;
(3) An EFV could interfere with necessary operation or maintenance activities, such as blowing liquids from the line; or
(4) An EFV meeting performance standards in §192.381 is not commercially available to the operator;

(d) Reporting. Each operator must report the EFV measures detailed in the annual report required by §191.11.